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Abstract

Post- and co-transcriptional RNA modifications are found to play various roles in regulating essential biological processes at all stages
of RNA life. Precise identification of RNA modification sites is thus crucial for understanding the related molecular functions and
specific regulatory circuitry. To date, a number of computational approaches have been developed for in silico identification of RNA
modification sites; however, most of them require learning from base-resolution epitranscriptome datasets, which are generally scarce
and available only for a limited number of experimental conditions, and predict only a single modification, even though there are
multiple inter-related RNA modification types available. In this study, we proposed AdaptRM, a multi-task computational method for
synergetic learning of multi-tissue, type and species RNA modifications from both high- and low-resolution epitranscriptome datasets.
By taking advantage of adaptive pooling and multi-task learning, the newly proposed AdaptRM approach outperformed the state-
of-the-art computational models (WeakRM and TS-m6A-DL) and two other deep-learning architectures based on Transformer and
ConvMixer in three different case studies for both high-resolution and low-resolution prediction tasks, demonstrating its effectiveness
and generalization ability. In addition, by interpreting the learned models, we unveiled for the first time the potential association
between different tissues in terms of epitranscriptome sequence patterns. AdaptRM is available as a user-friendly web server from
http://www.rnamd.org/AdaptRM together with all the codes and data used in this project.
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INTRODUCTION
Post-transcriptional RNA modifications are found to play essen-
tial roles in epitranscriptome regulation for all types of RNAs and
at all stages of RNA life [1–3]. Over 170 post-transcriptional modi-
fications have been identified in living organisms [4], participating
in various important biological processes such as fine-tuning RNA
structures, regulation of gene expression and protein synthesis,
response to environmental exposures, cell differentiation and
mechanistic toxicology [5–10]. Recent studies suggest that RNA
modifications have implications for human health and medical
science [11–15]. To date, over 100 RNA modification enzyme muta-
tions have been found to have an association with human dis-
eases [16]. Abnormal presence or absence of RNA modifications
can lead to human diseases, including various cancers, metabolic
disorders and developmental illnesses [17]. It becomes clear that
many exhilarating functions of RNA modifications remain to be
explored.

Precise identification of modification sites serves as the
basis for revealing their regulatory mechanisms and functions.
The recent rapid development of high-throughput sequencing
approaches has enabled the transcriptome-wide profiling of RNA
modification sites [18]. MeRIP-seq (m6A-seq) is the earliest and
most widely used in vitro N6-methyladenosine (m6A) identifica-
tion method [19, 20]. It combined immunoprecipitation with next-
generation sequencing: the fragmented RNAs containing signals
of modification are isolated (immunoprecipitated) from total RNA
by the m6A-specific antibody and then purified for sequencing.
The identified m6A-containing regions (peaks) are around 100 nt
long. On this basis, a refined m6A MeRIP-seq (refined RIP-seq)
has been developed, which requires a lower amount of input
RNA samples and could be applied to analyze patient tumors
[21]. Later, other modifications, such as 5-hydroxymethylcytidine
(hm5C), N4-acetylcytidine (ac4C) and N7-methylguanosine (m7G),
could be profiled with similar antibody-based high-throughput
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sequencing approaches hMeRIP-seq [22], acRIP-seq [23] and
m7G-MeRIP [24], respectively. Such immunoprecipitation-based
sequencing methods generate low-resolution epitranscriptome
data, i.e. peaks or sequences of varying lengths surrounding
the true modification site, while the exact location of the sites
remains undetermined.

As the field progresses, a series of high-resolution methods
have been proposed, making it possible to identify modifica-
tion sites at a single-nucleotide level in the genome, such as
antibody-based methods miCLIP [25], m6A-CLIP [26] and PA-m6A-
seq [27], and enzymatic methods MAZTER-Seq [28] and m6A
REF-seq [29]. However, although these methods can locate the
specific position of modification sites, they still have several
limitations. Corresponding wet-laboratory experiments usually
require expensive costs, long experiment time and large amounts
of input RNA materials, making modification detection unavail-
able to limited-quantity samples [30]. Another exciting technique,
Oxford Nanopore Technologies, which allows direct RNA sequenc-
ing without prior amplification, is under development for the
direct detection of RNA modifications but still faces significant
challenges in interpreting raw signals and systematic errors [31–
34]. As a consequence, although many advanced methods hold
great promise for detecting RNA modification at single-base res-
olution, currently low-resolution methods are more often used
than single-base methods, and the majority of available data is
still of low resolution [35].

Computational methods are often considered an alternative
avenue for epitranscriptome profiling, given the fact that wet-
laboratory experiments are usually costly and labor intensive [3].
A variety of machine-learning or deep-learning approaches have
been developed to predict putative RNA modification sites. SRAMP
was one of the earliest predictors of mammalian m6A sites from
sequence-derived features enabled by random forests [36]. iRNA-
m6A was established to identify m6A sites in different tissues
via the support vector machine (SVM) [37]. BERMP achieved an
area under the receiver operating characteristic curve (AUROC)
of 0.817 for predicting m6A in multiple species via integrating a
bidirectional gated recurrent unit network with random forest
[38]. Gene2vec adopted word2vec embedding for encoding m6A
sequences, combined with a convolution network and reached
an AUROC of 0.843 [39]. DeepM6ASeq applied two layers of con-
volution and one layer of bidirectional long short-term memory
to achieve an AUROC of 0.850 in m6A prediction [40]. WHISTLE
conducted an m6A forecast utilizing the information of sequence
and 35 genomic features, obtaining an AUROC of 0.98 on the
full transcript and 0.904 on mRNA, which so far was among the
highest accuracy obtained by the state-of-the-art methods [41].
Besides, although most prediction tools focused on m6A modifi-
cations, it is worth noting that an increasing number of compu-
tational methods have also been applied to other modifications.
For example, RAMPred [42], RNAm5CPred [43] and m7GHub [44]
employed the SVM algorithm to predict m1A, m5C and m7G sites,
respectively. References [1, 45] provide a detailed overview of cur-
rent tools for RNA modification prediction. Furthermore, multi-
task learning (MTL) has been introduced for solving multiple-
related problems in this field. MultiRM performed multitasking
via attention-based multi-label neural networks for predicting
different types of modifications [46].

It is a non-trivial task to pick suitable predictive strategies for
learning datasets. However, all the methods mentioned above
(and most of the current methods) are based only on high-
resolution data, which is generally scarce and available for only
very limited experimental conditions, and therefore have quite

restricted applicable scopes. They cannot be directly applied
to low-resolution data, which is the most abundant data type
nowadays, since the datasets of low resolution are regions or
peaks with varying sizes, and it is unclear the exact location
of the true modification site within the region or peak. The
varying length and the uncertain position of low-resolution
data increase the difficulty of exploiting its informative features
through learning. Thus, there is a great demand for computing
methods to detect and analyze low-resolution epitranscriptome
data. WeakRM is the first weakly supervised method of learning
RNA modifications from low-resolution data [47]. It cuts the input
sequence into several overlapping regions via sliding window and
evaluates the probability of these regions containing modification
of interest by a weakly supervised neural network. It achieved
reliable performance on the single task of identifying hm5C,
ac4C and m7G low-resolution datasets. m6A-TSFinder followed
exactly the weakly supervised method in WeakRM and conducted
a tissue-specific m6A prediction in 23 tissues [48]. However, none
of them are applicable to both high- and low-resolution data.

In this study, we proposed AdaptRM, a multi-task deep-learning
method for an integrated study of epitranscriptomes across tis-
sues and modifications. It could operate on both base-resolution
and high-resolution datasets without further preprocessing the
input primary sequence. It was mainly enabled by adaptive pool-
ing [49] and convolutional neural networks (CNNs) [50]. The adap-
tive pooling fed the most informative features to the downstream
portion of CNNs, generated vectors of the same size without
manually setting polling kernel or stride, and demonstrated a
good generalization ability for processing sequences with vary-
ing lengths. Repeated standard convolutional blocks were imple-
mented to exploit useful sequence features through learning. An
MTL [51] was conducted using AdaptRM, allowing learning several
tasks simultaneously so that each task could help all other tasks,
effectively avoiding potential overfitting during model training.

We focused on three case studies, including (1) tissue-specific
m6A prediction from low-resolution dataset of human [52], (2)
type-specific RNA modification prediction from low-resolution
dataset of zebrafish [53] and (3) cross-species m6A prediction
from high-resolution m6A dataset [54]. By formulating each
of these three case studies as an integrated multi-tasking
learning problem, we trained AdaptRM model and obtained
impressive results. We compared it with four methods, including
Transformer-Encoder [55], ConvMixer [56], WeakRM [47] and
TS-m6A-DL [54]. The Transformer and ConvMixer are recently
proposed deep-learning models for neural machine translation
and image classification. Since they can deal with texts or
images of varying sizes, we revised and implemented these two
advanced models to solve the problem stated in this study, which
also needs the support for handling input objects with varying
lengths. Furthermore, we compared AdaptRM with WeakRM
on low-resolution datasets and TS-m6A-DL on high-resolution
datasets, following the data type they targeted. Both are state-
of-the-art methods developed recently for RNA modification
prediction. We demonstrated that, despite its simplicity, AdaptRM
outperformed all these four competing methods in all three case
studies, suggesting its effectiveness and excellent generalization
capability.

In addition, we analyzed the correlation of weights between
each task in the model to unveil the potential association between
different modification types from single species and the associa-
tion of single modification among different tissues. The general
workflow of AdaptRM is shown in Figure 1. To facilitate access to
our model, a user-friendly web server has also been developed and

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbad105/7079954 by guest on 23 M

arch 2023



Adaptive pooling and RNA modification | 3

Figure 1. Workflow of developing AdaptRM. It entailed the following steps: (1) We collected RNA modifications derived from distinct techniques, which
involved different types of modifications in various tissues and species. All were RNA primary sequences. (2) AdaptRM and other deep learning competing
methods were implemented. (3) All the models were trained in both single-task and multi-task ways. (4) The MTL shared hidden layers between all the
tasks. (5) The model performance was evaluated by different metrics. (6) The correlation of weights between each task in the model was visualized,
unveiling the potential association between modifications. (7) A web server was developed to facilitate the use of our well-trained multi-task AdaptRM
model.

made freely available at http://www.rnamd.org/AdaptRM. Our
model is expected to be a useful tool for researchers of interest
and provides insights into the computational study of both high-
and low-resolution epitranscriptomes.

METHODS
Benchmark dataset
The proposed AdaptRM framework was tested on three case
studies, which were summarized in the following.

Table 1 shows a dataset of low-resolution m6A-containing
and non-modified RNA sequences in 25 human normal tissues
detected using MeRIP-seq technology. The positive sequences
contain m6A sites, but the exact location of them is unknown.
They were originally collected by Liu et al. [52]. We randomly
picked the negative data from the non-peak regions on the
same gene of the positive region. The negative samples were
down-sampled and cut short to match the number and size of
the positive samples. Sequences longer than 500 nt or shorter
than 50 nt were removed to mitigate potential false-positive
peaks caused by bioinformatics software. The whole dataset was
merged, shuffled and split into training and testing datasets
with a ratio of 8:2. This dataset is used for evaluating tissue-
specific m6A prediction from low-resolution epitranscriptome
data.

Table 2 summarizes the RNA modification-containing and
non-modified sequences of four different RNA modification types
(m1A, m5C, m6A and m7G) in the zebrafish brain. The positive data
were collected from a zebrafish methylation atlas [53] derived
from the MeRIP-seq technique [19, 20, 37]. The negative data
were generated in the same way previously described in Table 1.
This dataset is used for testing cross-modification multi-task
prediction from low-resolution epitranscriptome data.

Table 3 describes a cross-species cross-tissue m6A dataset of
base resolution. Its underlying technique is m6A-REF-seq [29],

Table 1. Human tissue-specific m6A data of low resolution

Human-m6A Total number of
samples

Training Testing

Adrenal gland 12 598 10 078 2520
Brainstem 18 176 14 540 3636
Cerebellum 3180 2544 636
Cerebrum 7472 5977 1495
Colon 14 722 11 777 2945
EndoC 18 732 14 985 3747
Endometrial 3148 2518 630
Heart 4794 3835 959
HSCs 11 054 8843 2211
Hypothalamus 18 640 14 912 3728
Islet 6706 5364 1342
Kidney 3930 3144 786
Liver 14 554 11 643 2911
Lung 6376 5100 1276
B-Lymphocyte 12 986 10 388 2598
Muscle 2876 2300 576
Ovary 4842 3873 969
Prostate 14 514 11 611 2903
Rectum 6388 5110 1278
RWPE-1 11 544 9235 2309
Skin 3978 3182 796
Stomach 4678 3742 936
Testis 13 056 10 444 2612
Thyroid gland 5496 4396 1100
Urinary bladder 3120 2496 624

HSCs = Hematopoietic stem cells.

a single-base antibody-independent sequencing method. Both
positive and negative sequences are 41 nt long, containing an
adenine in the middle corresponding to m6A and non-m6A in the
positive and negative samples, respectively. This dataset is used to
support cross-species cross-tissue m6A prediction task from base-
resolution epitranscriptome data.
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Table 2. Low-resolution RNA modification data of multiple
types in zebrafish brain

Modification Total number of samples Training Testing

m1A 11 557 9245 2312
m5C 10 854 8683 2171
m6A 7950 6360 1590
m7G 1977 1581 396

Data and label encoding
One-hot encoding is one of the most prevalent encoding methods,
which maps each input element into a vector. In this study, there
are four types of nucleotides, i.e. A (adenine), C (cytosine), G (gua-
nine) and U (uracil). Each nucleotide in sequences is assigned to a
vector of 4 (A → [1,0,0,0], C → [0,1,0,0], G → [0,0,1,0], U → [0,0,0,1]).

The labels are represented by sparse encoding. We assigned
each sequence for training a label vector of dimension T, where
T is the number of assigned tasks. In this study, T should be 40
(25 tasks in the first case study +4 tasks in the second case +11
tasks in the third case). In the training step, a label vector consists
of 1/0/−1, where 1 means a positive label to the target task and
−1 means negative. 0 is assigned to irrelevant tasks for masked
training and will be automatically exempt during cost calculation.
Each label vector has only one element being 1 or −1 and all other
elements are 0. Since input datasets vary in length, each training
step only uses one sequence and its corresponding label vector.

Importantly, in the performance evaluation step, we only
focused on the target tasks (ignored irrelevant tasks labeled as
0) and converted their corresponding labels from 1/−1 to 1/0 for
the sake of comparing the predicted probabilities with them.

AdaptRM
Starting from the input layer, this sub-section presents a detailed
description of the proposed AdaptRM framework (Figure 2). First,
the input sequence of length L is converted to a matrix via one-
hot encoding. Repeated standard convolutional blocks are imple-
mented to exploit useful sequence features through learning.
Each block contains a convolutional layer, a Dropout function and
a PReLU activation function. The adaptive pooling in the middle
reduces the spatial size of the features fed into the downstream
portion of CNNs, generates vectors of the same size without man-
ually setting the polling kernel or stride, and increases the gen-
eralization ability for processing sequences with varying lengths.
Two convolution blocks before the adaptive pooling layer aim
to extract local information, while the two convolution blocks
after that aim to extract general information. A linear classifier
is placed at the end, generating a vector of length T. Each element
of it indicates the probability of each assigned task. The hyperpa-
rameter setting in AdaptRM is summarized in Table 4.

Multi-tasking learning [51] is applied during model training.
MTL helps the model to generalize to multiple tasks simulta-
neously. The same hidden layers are shared between all tasks,
meaning that the model is expected to find a general represen-
tation that captures the features from all tasks, reducing the
risk of overfitting. Besides, this framework leads to implicit data
augmentation. It allows the model to learn features that are easily
found in one task and provides it to another task with a noisy
pattern blurring this feature. Different tasks might share some
features that are helpful to each other.

Pooling functions can play an important role in a model. It
usually aims to capture the essential characteristics of input

information, reduce the size of feature maps passed into the
downstream neural networks and therefore increase model gen-
eralization ability. Most commonly used pooling functions include
max pooling [57], average pooling [58], stochastic pooling [59] and
variants of them. Adaptive pooling [49] is applied in AdaptRM,
which is a variant of spatial pyramid pooling [60]. In such pooling,
the output sizes are fixed no matter the length of its input layer.
The stride and kernel sizes are automatically calculated to adapt
to the output size. The adaptive pooling makes each spatial bin
being processed proportional to the input vector size, therefore,
maintaining the spatial information of the previous layer when
capturing informative features.

The activation function PReLU [60], a generalized version of
ReLU, is used in AdaptRM. PReLU has a learnable coefficient
when the input element is less than 0, allowing different layers
to have adjustable slopes in the negative part. A recent study
[60] suggested in well-trained deep neural networks, the PReLU in
earlier layers have larger positive slopes, while in deeper layers
have smaller slopes, which means that the neural network in
deeper layers tries to retain more information at earlier layers,
demonstrating the effectiveness of PReLU during the training of
deep-learning models.

For single-task training, binary cross-entropy is used as the cost
function. For the multi-task training, a modified version of cross-
entropy is utilized for masked training. It is calculated as follows:

Loss = −
∑ [(

1 + ytrue
) × y2

true

2
∗ log ypred +

(
1 − ytrue

) × y2
true

2

∗ log
(
1 − ypred

) ]
, (1)

where ytrue represents the true label (one from 1,0 or −1) and ypred

represents the predictive probability. During the loss calculation,
the y2

true term masks task with a label being 0, i.e. removing the
task that the label is not given. The

(
1 ± ytrue

)
/2 term maps the

label from 1/−1 to the probability 1/0 so that the function is able
to compare the predicted probability ypred with its true label.

Competing methods
The competing methods include the Transformer-Encoder, Con-
vMixer, WeakRM (only for low resolution), TS-m6A-DL and im6A-
TS-CNN (only for high resolution). All the methods were imple-
mented with the Pytorch 1.12.

Transformer [61] is a Seq2seq model first proposed for neural
machine translation and then has been successfully used in
many NLP tasks [62–65]. It has an Encoder-Decoder architecture,
enabled by multi-head attention mechanisms and feedforward
neural networks. The Encoder reads a sequence vector and rep-
resents it with a high-dimensional vector, which is passed into
the Decoder, generating another sequence in the target language.
Taking advantage of the Encoder network of Transformer, the
Vision Transformer [66] was proposed for image classification.
It partitions the input image into several patches of the same
size and adds an extra learnable token at the beginning of these
patches for classification (CLS token). The input vector formed
by sub-image patches and CLS token is then embedded by a
neural network and fed into a stack of Encoders. The Encoder
here is exactly the same concept as that in the Transformer
model. The Encoder stack eventually generates a vector, where
only the position of the CLS token is kept and utilized for image
classification.
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Table 3. Tissue-specific m6A data of high resolution in multiple species

Species Tissue Total number of samples Training Testing

Human Brain 18 418 9210 9208
Kidney 18 294 9148 9146
Liver 10 536 5268 5268

Mouse Brain 32 100 16 050 16 050
Heart 8802 4402 4400
Kidney 15 810 7906 7904
Liver 16 532 8266 8266
Testis 18 826 9414 9412

Rat Brain 9406 4704 4702
Kidney 13 730 6866 6864
Liver 7048 3524 3524

Figure 2. AdaptRM model architecture. (A) The input sequence is encoded by one-hot encoding. (B) A convolutional block in AdaptRM consists of a
convolutional layer, dropout and activation function. (C) An adaptive pooling can produce vectors of fixed lengths. (D) The PReLU function introduces a
learnable coefficient. (E) A linear classifier is placed at last. (F) An overview of AdaptRM. Taking a sequence as input, the output of AdaptRM is a vector,
each element of which suggests the answer to the assigned task (true or false).

Based on the Encoder mechanisms proposed in the Trans-
former [61, 67], the CLS token and patch embedding structure
utilized in Vision Transformer (ViT) [66], we developed a
multi-task Encoder model for solving our problem stated

previously. We chose the Transformer-Encoder as one of com-
paring methods for the following reasons. First, attention-based
methods have achieved excellent performance in many fields,
sometimes combining with or even replacing convolutional and
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Table 4. Hyperparameter setting in AdaptRM

Layers Settings Output shape Parameters

Input layer One-hot encoding (1, L, 4) –
Conv1d_1 in_channels = 4, out_channels = 32, kernel_size = 7, stride = 1 (1, 32, L-6) 896
Conv1d_2 in_channels = 32, out_channels = 64, kernel_size = 7, stride = 1 (1, 64, L-12) 14 336
AdaptiveAvgPool1d output_size = 19 (1, 64, 19) 64
Conv1d_3 in_channels = 64, out_channels = 32, kernel_size = 7, stride = 1 (1, 32, 13) 14 336
Conv1d_4 in_channels = 32, out_channels = 64, kernel_size = 7, stride = 1 (1, 64, 7) 14 336
Flatten – (1, 448) –
Linear_1 in_features = 448, out_features = 1000, bias = True (1, 1000) 448 000
Linear_2 in_features = 1000, out_features = 100, bias = True (1, 100) 100 000
Sigmoid – (1, 100) 100
Dropout layers P = [0.1, 0.2, 0.2, 0.2, 0.2] – 1192
PReLU num_parameters = 1 – 5
Adam lr = 0.00005 – –
Total – (1, T) 593 201

Note: ∗L is the length of the input sequence. T represents the number of assigned tasks. For a single-task model, T is just equal to 1.

recurrent neural networks [55]. Since most existing predictors
for studying RNA modification are based on classic machine-
learning algorithms, conventional CNNs or RNNs [1], we would
like to explore the feature extraction ability of self-attention
mechanisms on the low-resolution epitranscriptome datasets.
Second, the patch embedding structure allows input with
different sizes, which might be a good fit for low-resolution
datasets with varying lengths. It partitions the input sequence
into the same number of patches so that the subsequent layers
can get a fixed number of embeddings. With patch embedding, the
input sequences can be of any size. Please refer to supplementary
materials for more details related to this model.

ConvMixer [56], a recently proposed neural network in the
vision field, has a similar architecture as ViT. It consists of patch
embedding and a stack of repeated convolutional blocks. Each
block is formed by combining a depthwise convolutional layer
(with a large kernel size) and a pointwise convolutional layer (with
kernel 1). We chose ConvMixer as one of the competing methods
because, similarly, the patch embedding structure allows input
objects with varying sizes, and also, this method outperformed
ViT and some of its variants, especially on small datasets. Mainly
built upon the patch embedding and convolutional blocks stated
in the ConvMixer, we developed a ConvMixer-based model to solve
our multi-task problem. Please refer to supplementary materials
for more details.

WeakRM [47] is the latest computational method identifying
low-resolution RNA modifications. It formulated this problem as
a multiple-instance learning (MIL)/weakly supervised task [68–
72]. The MIL is a variation of supervised learning where one
only knows the label of a ‘bag’ of instances, but the label of
each instance is unclear. The task of MIL is to identify the label
at the instance level. WeakRM adopted a gated-attention-based
MIL [73]: it randomly cut the input sequence (bag) into several
regions (instances), mapped these instances to an embedding
by a convolutional neural network and finally calculated the
instance-level features by a gated-attention mechanism. Since
WeakRM is designed specially for peak calling data, we chose it
as a competing method for case studies related to low-resolution
datasets. We also extended it to multi-WeakRM to assess its
performance on MTL. More details are provided in supplementary
materials.

In addition, we compared our newly proposed models to
some latest methods in terms of classifying high-resolution
modification sites. Dao et al. [37] built a high-quality benchmark

dataset of m6A sites and utilized SVM to identify modifications in
several tissues of humans, mice and rats. Later, trained on the
same benchmark, CNN-enabled deep-learning methods im6A-
TS-CNN [74] and TS-m6A-DL [54] were developed for a multi-
tasking tissue-specific prediction. Both methods were constructed
by a main convolutional body followed by a linear classifier. The
difference is that TS-m6A-DL concatenated the output of every
convolutional block during training and fed them into the last
linear classifier, rather than directly stacking these convolutional
blocks. To further demonstrate generalization ability, AdaptRM
was trained on this benchmark dataset and compared to im6A-
TS-CNN and TS-m6A-DL.

RESULTS AND DISCUSSION
Case study 1: tissue-specific prediction from
low-resolution data
To explore the model performance on tissue-specific datasets
of low resolution, AdaptRM and three competing models were
trained on the dataset summarized in Table 1. Two learning strate-
gies, single-task learning and MTL, were implemented for each
model. Figure 3 shows the distribution of AUROC results in each
tissue task for these four deep-learning methods. Table 5 demon-
strates the averaged results of 25 tissue tasks estimated by dif-
ferent metrics (the results of each specific tissue are shown in
Tables S1–S4). The multi-task AdaptRM outperformed the com-
peting classifiers and achieved the highest accuracy among all
the tests. The performance evaluation demonstrated that MTL
significantly improves model performance as we expected, lead-
ing to higher accuracy and better stability in all models. The
results suggest that despite the existence of conditional-specific
regulation of RNA methylation-related regulators, the methyla-
tion patterns from other tissues may still contribute significantly
to the prediction in other tissues via the MTL framework.

Moreover, in order to explore the effectiveness of PReLU, we
trained the above methods with ReLU and compared their perfor-
mance to the training results with PReLU (Table S5). The results
show that PReLU generally improved the accuracy of all meth-
ods. The degree of improvement might be related to the depth
of neural networks. Since PReLU is mainly used to help the
deeper layers retain more information from earlier layers, it has
more evident effects on improving a deeper model. Therefore,
it has significantly improved the Transformer-Encoder and Con-
vMixer, which contain stack of computational blocks (5 Encoder
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Table 5. Model performance evaluation on tissue-specific m6A prediction (low resolution)

Modes Testing
methods

Specificity Sensitivity Average
precision

F1 scores MCC AUROC

Single task WeakRM 0.7464 0.7096 0.7680 0.7342 0.4490 0.7964
Encoder 0.7653 0.7082 0.7785 0.7438 0.4642 0.8047
ConvMixer 0.7554 0.7140 0.7770 0.7431 0.4630 0.8032
AdaptRM 0.7714 0.7477 0.8109 0.7622 0.5134 0.8340

Multi-task WeakRM 0.8408 0.7300 0.8313 0.7922 0.5605 0.8554
Encoder 0.8338 0.7595 0.8411 0.8022 0.5880 0.8676
ConvMixer 0.8986 0.7586 0.8899 0.8301 0.6427 0.9027
AdaptRM 0.9014 0.7634 0.8935 0.8336 0.6501 0.9060

Figure 3. The AUROC of model performance on human tissue-specific
datasets. AdaptRM and competing methods were evaluated on the
refined RIP-seq datasets (low resolution) [52]. Multi-task versions of mod-
els presented better performance than the single-task models did. The
AdaptRM trained in a multi-task way demonstrated the most accurate
and stable performance among all the methods.

blocks and 10 convolutional blocks, respectively), but only slightly
enhanced AdaptRM and WeakRM, which are relatively shallow
models. Nonetheless, AdaptRM with PReLU performed better than
all other methods in both modes.

Besides, since the number of samples in each task is quite
diverse, we trained the multi-task version of all the above methods
with a weighted cross entropy strategy. The weight assigned to the
t-th task is shown as the following equation:

weightt =
∑T

i=1 ni

T ∗ nt
, (2)

where T is the total number of tasks and nt denotes the number
of samples in the tth task. The weight is designed to be the
inverse ratio of the sample size in target task times the average
sample size of different tasks, which should be a value inversely
proportional to the task sample number and close to 1. We
expected the weighted cost function to eliminate the potential
effects caused by the varying data sizes in different tasks. How-
ever, calculating the cost in this way slightly lowers the predic-
tion accuracy compared to the binary cross-entropy mentioned
before. The results are shown in Table S6. Therefore, we consid-
ered that directly summing the losses is a better strategy in this
study.

Case study 2: modification-specific prediction
from low-resolution data
To explore the ability to identify different RNA modifications
from low-resolution epitranscriptomes, AdaptRM and compet-
ing models were trained on a zebrafish atlas dataset summa-
rized in Table 2. There is no need to involve comparison to the
Transformer-Encoder method here since it is declared to prefer
adequately large-scale datasets [66], and it did not beat AdaptRM
and ConvMixer in case study 1, not to say in this case with smaller
datasets in case study 2. Table 6 summarizes the average AUROC
scores of different well-trained models performing on the testing
data. AdaptRM also outperformed both ConvMixer and WeakRM
on the prediction of each type of modification. For all models,
multi-task versions performed better than single-task versions,
suggesting that the sequence patterns may be partially shared
among different RNA modification types, and the predictive fea-
tures identified for other modification types are useful as well via
the MTL framework.

Case study 3: cross-species tissue-specific
prediction on high-resolution data
We show in this example that, besides learning from low-
resolution data, AdaptRM also has an impressive ability to
learn from high-resolution datasets. AdaptRM was compared to
ConvMixer and the state-of-the-art methods [46, 54, 74] for cross-
species high-resolution modification prediction. WeakRM is not
involved here since it is only for low-resolution epitranscriptomes.
Table 7 and Table S7 present the AUROC scores obtained by
different models trained on the m6A-REF-seq datasets shown
in Table 3. AdaptRM achieved better results than the tested
competing methods. ConvMixer obtained similar AUROC as
TS-m6A-DL on the testing dataset but lower on the validation
dataset. Estimated results demonstrated good generalization
ability of AdaptRM and great power to handle multiple tasks
simultaneously.

Potential similarity between tissues
and modifications
In both tissue-specific and modification-specific predictions (case
1 and case 2), the multi-task strategy significantly improved
the performance of all the models, suggesting putative links
between these tasks. To gain insights into the potential associa-
tion between modifications of distinct types or in different tissues,
we extracted the correlation of weights between each task in the
well-trained multi-task AdaptRM.

Specifically, we drew a heat map (Figure 4) to visualize potential
relationship of m6A methylation pattern among different human
tissues, based on case study 1. It calculated coefficients between
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Table 6. Model performance evaluation on modification-specific prediction (low resolution)

Tasks Single task Multi-task

WeakRM ConvMixer AdaptRM WeakRM ConvMixer AdaptRM

m1A 0.960 0.968 0.985 0.964 0.981 0.992
m5C 0.948 0.974 0.979 0.959 0.983 0.989
m6A 0.962 0.963 0.975 0.964 0.983 0.990
m7G 0.923 0.914 0.946 0.946 0.960 0.978
Average 0.948 0.955 0.971 0.958 0.976 0.987

Table 7. Model performance evaluation on tissue-specific m6A prediction (high resolution)

Multi-tasks AdaptRM ConvMixer im6A-TS-CNN TS-m6A-DL

Valid Test Valid Test Valid Test Valid Test

Human Brain 0.820 0.826 0.796 0.808 0.803 0.806 0.826 0.810
Kidney 0.895 0.890 0.878 0.882 0.878 0.873 0.890 0.880
Liver 0.893 0.899 0.889 0.891 0.881 0.881 0.914 0.878

Mouse Brain 0.886 0.882 0.877 0.871 0.871 0.872 0.883 0.873
Heart 0.854 0.847 0.846 0.827 0.812 0.816 0.850 0.823
Kidney 0.915 0.901 0.899 0.891 0.884 0.886 0.908 0.889
Liver 0.829 0.816 0.795 0.797 0.795 0.793 0.829 0.791
Testis 0.874 0.856 0.836 0.843 0.838 0.847 0.863 0.843

Rat Brain 0.876 0.878 0.844 0.869 0.847 0.852 0.876 0.854
Kidney 0.916 0.918 0.905 0.911 0.902 0.908 0.907 0.908
Liver 0.922 0.904 0.895 0.895 0.883 0.885 0.903 0.885

Average 0.880 0.874 0.860 0.862 0.854 0.856 0.877 0.858

Figure 4. Association among different tissues in terms of m6A sequence patterns.

weight vectors in each pair of tasks (tissue-specific predictions).
A higher score represents higher similarity. The weight vectors
were extracted from the second to last layer of the classifier. The

diagonal element should be 1 since the correlation coefficient of a
task and itself must be 1. m6A modification in the heart, bladder
and stomach are highly similar, while that in the ovary and kidney
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Figure 5. Association among different modification types in terms of
sequence patterns.

differs. Overall, the model suggests that m6A modification pat-
terns over human tissues can be separated into two large groups
and several outliers. The first group would be from the heart to the
ovary, containing 11 tissues. The second group would be from the
testis to the brainstem, containing seven tissues. Tissue/task pairs
that share a low correlation coefficient use different information
for prediction, which might indicate that modification between

these tissues occurs in different conditions, but biological tests
still need to be done to confirm it.

In addition, we visualized the potential relation between differ-
ent modifications in zebrafish based on case study 2 in Figure 5.
Interestingly, the strongest association was observed between
m1A and m6A, which are both modifications to adenosine.

Web server
To facilitate access to our model, a user-friendly web server has
been developed (Figure 6). It takes FASTA sequences as input.
The length of input sequences should range from 40 to 500 nt.
Users need to specify a task of interest first, paste the sequences
into the text box or upload a FASTA file, and click the button to
conduct RNA modification prediction automatically using multi-
task AdaptRM. Results will be presented after a while.

CONCLUSION
Recent high-throughput sequencing techniques advanced the
epitranscriptome study, and post- and co-transcriptional RNA
modifications are found to play important roles in the regulation
on all types of RNAs. Many computational approaches have
been developed for predicting RNA modification sites, but most

Figure 6. Screenshot of the AdaptRM web server. Users can specify a task of interest and upload the query sequences via our website. Results and models
can be downloaded from the web page.
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of them are computed only on high-resolution data. Although
a series of advanced sequencing methods were proposed to
generate high-resolution data, low-resolution methods are still
more often used than single-base resolution methods because
they are simpler, less expensive and have fewer requirements for
the input RNA samples. Therefore, an integrated computational
study for the peak-calling/low-resolution data is urgently
needed.

In this study, we conducted MTL of low-resolution epitran-
scriptomes across tissues, types and species. We performed
in-depth research for the model selection and utilized three
novel methods, including AdaptRM (CNN + adaptive pooling),
Transformer-Encoder (patch embedding + multi-head self-
attention) and ConvMixer (patch embedding + CNN + adaptive
pooling). The proposed methods were further compared to state-
of-the-art approaches WeakRM (multiple-instance learning +
CNN + gated-attention) on low-resolution datasets and TS-m6A-
DL (CNN) on high-resolution datasets.

We found that AdaptRM outperformed other competing
methods tested in all the three case studies, including tissue-
specific m6A prediction in human (low resolution), modification-
specific prediction in zebrafish (low resolution) and cross-species
tissue-specific m6A prediction (high resolution), demonstrating its
effectiveness and excellent generalization ability. ConvMixer per-
formed slightly worse than AdaptRM but beat the Transformer-
Encoder and other methods. The results are consistent with
the empirical conclusions summarized in recent studies that
ConvMixer performed better than the Transformer-Encoder on
small datasets, and the latter prefers adequately large-scale
datasets.

The success of AdaptRM may primarily result from the applica-
tion of adaptive pooling. For the peak calling data, the sequence
itself varies in length, but classical machine-learning classifiers
cannot handle inputs with unknown sizes. CNNs can handle
inputs with unknown sizes but will return outputs with varying
lengths. In adaptive pooling, the output size is fixed no matter the
length of its previous input vector. The stride and kernel sizes are
automatically calculated to adapt to the output setting. Even if
the input sequences are of varying lengths, each spatial bin being
focused is proportional to the input sequence size, allowing the
pooling operator to extract informative features without spoiling
the spatial information of the previous layer.

In addition, we found that MTL significantly improved the per-
formance of all the models, suggesting clear links among various
tasks, i.e. sequence patterns among different tissues and modi-
fication types. We visualized the correlation of weights between
each task in multi-task AdaptRM, unveiling the potential associa-
tion between modifications of distinct types or in different tissues,
although such conclusions remain to be tested and verified by
further experiments in the future.

Finally, a user-friendly web server was developed to facilitate
access to our model. It is clear that our AdaptRM method can be
easily extended to include more tissues, more modification types
and more species for effectively learning from both low-resolution
and high-resolution epitranscriptomes.

Key Points

• In this study, we proposed AdaptRM, a multi-task com-
putational method for synergetic learning of multi-
tissue, type and species RNA modifications from both
high- and low-resolution epitranscriptome datasets.

• We showed that AdaptRM outperformed the state-of-
the-art computational models (WeakRM and TS-m6A-
DL) and two other novel deep-learning architectures
based on Transformer and ConvMixer in three different
case studies for both high-resolution and low-resolution
prediction tasks.

• We further interpreted the learned models and unveiled
for the first time the potential association between dif-
ferent tissues in terms of epitranscriptome sequence
patterns.

• To facilitate access to our model, a user-friendly web
server has also been developed and made freely avail-
able at http://www.rnamd.org/AdaptRM.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxfordjournals.
org/.
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